I/O functions
fopen
Open a file.

FILE *fopen(const char *filename, const char *mode);
Return Value
Each of these functions returns a pointer to the open file. A null pointer value indicates an error.

Parameters
filename
Filename

mode
Type of access permitted

The character string mode specifies the type of access requested for the file, as follows:

"r"
Opens for reading. If the file does not exist or cannot be found, the fopen call fails.

"w"
Opens an empty file for writing. If the given file exists, its contents are destroyed.

"a"
Opens for writing at the end of the file (appending) without removing the EOF marker before writing new data to the file; creates the file first if it doesn’t exist.

"r+"
Opens for both reading and writing. (The file must exist.)

"w+"
Opens an empty file for both reading and writing. If the given file exists, its contents are destroyed.

fclose
Closes a stream (fclose).

int fclose(FILE *stream);
Return Value
fclose returns 0 if the stream is successfully closed

Parameter
stream
Pointer to FILE structure

Example
/*This program opens files named "data"

 * and "data2". Then closes both files.

 */

#include <stdio.h>

FILE *stream, *stream2;

void main(void)

{

 /* Open for read (will fail if file "data" does not exist) */

 if((stream = fopen("data", "r")) == NULL)

 printf("The file 'data' was not opened\n");

 else

 printf("The file 'data' was opened\n");

 /* Open for write */

 if((stream2 = fopen("data2", "w+")) == NULL)

 printf("The file 'data2' was not opened\n");

 else

printf("The file 'data2' was opened\n");

/*Close Files */

fclose(stream);

fclose(stream2);

}

Output
The file 'data' was opened

The file 'data2' was opened

fgetc
Read a character from a stream

int fgetc(FILE *stream);

Return Value
fgetc returns the character read as an int or return EOF to indicate an error or end of file

Parameter
stream
Pointer to FILE structure

Example
/* FGETC.C: This program uses getc to read the first

 * 80 input characters (or until the end of input)

 * and place them into a string named buffer.

 */

#include <stdio.h>

#include <stdlib.h>

void main(void)

{

 FILE *stream;

 char buffer[81];

 int i, ch;

 /* Open file to read line from: */

 if((stream = fopen("fgetc.c", "r")) == NULL)

 exit(0);

 /* Read in first 80 characters and place them in "buffer": */

 ch = fgetc(stream);

 for(i=0; (i < 80) && (feof(stream) == 0); i++)

 {

 buffer[i] = (char)ch;

 ch = fgetc(stream);

 }

 /* Add null to end string */

 buffer[i] = '\0';

 printf("%s\n", buffer);

 fclose(stream);

}

Output
/* FGETC.C: This program uses getc to read the first

 * 80 input characters (or

fputc

Writes a character to a stream

int fputc(int c, FILE *stream);

Return Value
Returns the character written.

Parameters
c
Character to be written

stream
Pointer to FILE structure

Example
/* This program uses fputc

 * to send a character array to stream.

 */

#include <stdio.h>

void main(void)

{

 FILE *stream;

 stream= fopen(“file” , ”w”);

 char strptr1[] = "This is a test of fputc!!\n";

 char *p;

 /* Print line to stream using fputc. */

 p = strptr1;

 while(fputc(*(p++), stream) != EOF) ;

}

fgets
Get a string from a stream.

char *fgets(char *string, int n, FILE *stream);
Return Value
Returns string. NULL is returned to indicate an error or an end-of-file condition.

Parameters
string
Storage location for data

n
Maximum number of characters to read

stream
Pointer to FILE structure

Remarks
The fgets function reads a string from the input stream argument and stores it in string. fgets reads characters from the current stream position to and including the first newline character, to the end of the stream, or until the number of characters read is equal to n – 1, whichever comes first. The result stored in string is appended with a null character. The newline character, if read, is included in the string.

Example
/* FGETS.C: This program uses fgets to display

 * a line from a file on the screen.

 */

#include <stdio.h>

void main(void)

{

 FILE *stream;

 char line[100];

 if((stream = fopen("fgets.c", "r")) != NULL)

 {

 if(fgets(line, 100, stream) == NULL)

 printf("fgets error\n");

 else

 printf("%s", line);

 fclose(stream);

 }

}

Output
/* FGETS.C: This program uses fgets to display

fputs
Write a string to a stream.

int fputs(const char *string, FILE *stream);
Return Value
Returns a nonnegative value if it is successful.

Parameters
string
Output string

stream
Pointer to FILE structure

Example
/* This program uses fputs to write

 * a single line to the stdout stream.

 */

#include <stdio.h>

void main(void)

{

 fputs("Hello world from fputs.\n", stdout);

}

Output
Hello world from fputs.

fread
Reads data from a stream.

size_t fread(void *buffer, size_t size, size_t count, FILE *stream);

Return Value
fread returns the number of full items actually read, which may be less than count if an error occurs or if the end of the file is encountered before reaching count.

Parameters
buffer
Storage location for data

size
Item size in bytes

count
Maximum number of items to be read

stream
Pointer to FILE structure

Remarks
The fread function reads up to count items of size bytes from the input stream and stores them in buffer. The file pointer associated with stream (if there is one) is increased by the number of bytes actually read. If the given stream is opened in text mode, carriage return–linefeed pairs are replaced with single linefeed characters. The replacement has no effect on the file pointer or the return value. The file-pointer position is indeterminate if an error occurs. The value of a partially read item cannot be determined.

fwrite
Writes data to a stream.

size_t fwrite(const void *buffer, size_t size, size_t count, FILE *stream);

Return Value
fwrite returns the number of full items actually written, which may be less than count if an error occurs. Also, if an error occurs, the file-position indicator cannot be determined.

Parameters
buffer
Pointer to data to be written

size
Item size in bytes

count
Maximum number of items to be written

stream
Pointer to FILE structure

Remarks
The fwrite function writes up to count items, of size length each, from buffer to the output stream. The file pointer associated with stream (if there is one) is incremented by the number of bytes actually written. If stream is opened in text mode, each carriage return is replaced with a carriage-return – linefeed pair. The replacement has no effect on the return value.
Example
/* FREAD.C: This program opens a file named FREAD.OUT and

 * writes 25 characters to the file. It then tries to open

 * FREAD.OUT and read in 25 characters. If the attempt succeeds,

 * the program displays the number of actual items read.

 */

#include <stdio.h>

void main(void)

{

 FILE *stream;

 char list[30];

 int i, numread, numwritten;

 /* Open file in text mode: */

 if((stream = fopen("fread.out", "w+t")) != NULL)

 {

 for (i = 0; i < 25; i++)

 list[i] = (char)('z' - i);

 /* Write 25 characters to stream */

 numwritten = fwrite(list, sizeof(char), 25, stream);

 printf("Wrote %d items\n", numwritten);

 fclose(stream);

 }

 else

 printf("Problem opening the file\n");

 if((stream = fopen("fread.out", "r+t")) != NULL)

 {

 /* Attempt to read in 25 characters */

 numread = fread(list, sizeof(char), 25, stream);

 printf("Number of items read = %d\n", numread);

 printf("Contents of buffer = %.25s\n", list);

 fclose(stream);

 }

 else

 printf("File could not be opened\n");

}

Output
Wrote 25 items

Number of items read = 25

Contents of buffer = zyxwvutsrqponmlkjihgfedcb
Examples

fscanf-fprintf

#include <stdio.h>

int main ()

{

 char str [80];

 float f;

 FILE * pFile;

 pFile = fopen ("myfile.txt","w+");

 fprintf (pFile, "%f %s", 3.1416, "PI");

 rewind (pFile);

 fscanf (pFile, "%f", &f);

 fscanf (pFile, "%s", str);

 fclose (pFile);

 printf ("I have read: %f and %s \n",f,str);

 return 0;

}

fputc-fread

#include <stdio.h>

int main ()

{

 int n;

 FILE * pFile;

 char buffer [27];

 pFile = fopen ("myfile.txt","w+");

 for (n='A' ; n<='Z' ; n++)

 fputc (n, pFile);

 rewind (pFile);

 fread (buffer,1,26,pFile);

 fclose (pFile);

 buffer[26]='\0';

 puts (buffer);

 system("pause");

 return 0;

}

fgetc-fputc

#include <stdio.h>

int main() {

 FILE *file;

 char sentence[50];

 int i;

 file = fopen("sentence.txt", "w+");

 /* we create a file for reading and writing */

 if(file==NULL) {

 printf("Error: can't create file.\n");

 return 1;

 }

 else {

 printf("File created successfully.\n");

 printf("Enter a sentence less than 50 characters: ");

 gets(sentence);

 for(i=0 ; sentence[i] ; i++) {

 fputc(sentence[i], file);

 }

 rewind(file); /* reset the file pointer's position */

 printf("Contents of the file: \n\n");

 while(!feof(file)) {

 printf("%c", fgetc(file));

 }

 printf("\n");

 fclose(file);

 system("pause");

 return 0;

 }

}
****Take a look at : http://computer.howstuffworks.com/c29.htm ****

